圆的基本性质数学知识点

网上有关“圆的基本性质数学知识点”话题很是火热,小编也是针对圆的基本性质数学知识点寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

 1、圆的对称性。

 (1)圆是轴对称图形,它的对称轴是直径所在的直线。

 (2)圆是中心对称图形,它的对称中心是圆心。

 (3)圆是旋转对称图形。

 2、垂径定理。

 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

 (2)推论:

 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

 平分弧的直径,垂直平分弧所对的弦。

 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

 (1)同弧所对的圆周角相等。

 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

 5、夹在平行线间的两条弧相等。

 拓展

 一、圆的相关概念

 1、圆的定义

 在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

 2、直线圆的与置位关系

 1.线直与圆有唯公一共时,点做直叫与圆线切

 2.三角的外形圆接的圆叫做三心形角外心

 3.弦切角于所等夹弧所对的的圆心角

 4.三角的内形圆切的圆叫做三心形角内心

 5.垂于直径半直线必为圆的的切线

 6.过径半外的点并且垂直端于半的径直线是圆切线

 7.垂于直径半直线是圆的的切线

 8.圆切线垂的直过切于点半径

 3、圆的几何表示

 以点O为圆心的圆记作“⊙O”,读作“圆O”

 二、垂径定理及其推论

 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

 推论1:

 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

 (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

 推论2:圆的两条平行弦所夹的弧相等。

 垂径定理及其推论可概括为:

 过圆心

 垂直于弦

 直径平分弦知二推三

 平分弦所对的优弧

 平分弦所对的劣弧

 三、弦、弧等与圆有关的定义

 1、弦

 连接圆上任意两点的线段叫做弦。(如图中的AB)

 2、直径

 经过圆心的弦叫做直径。(如途中的CD)

 直径等于半径的2倍。

 3、半圆

 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

 4、弧、优弧、劣弧

 圆上任意两点间的部分叫做圆弧,简称弧。

 弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

 大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的'弧叫做劣弧(多用两个字母表示)

 四、圆的对称性

 1、圆的轴对称性

 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

 2、圆的中心对称性

 圆是以圆心为对称中心的中心对称图形。

 五、弧、弦、弦心距、圆心角之间的关系定理

 1、圆心角

 顶点在圆心的角叫做圆心角。

 2、弦心距

 从圆心到弦的距离叫做弦心距。

 3、弧、弦、弦心距、圆心角之间的关系定理

 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

 推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

 六、圆周角定理及其推论

 1、圆周角

 顶点在圆上,并且两边都和圆相交的角叫做圆周角。

 2、圆周角定理

 一条弧所对的圆周角等于它所对的圆心角的一半。

 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

 七、点和圆的位置关系

 设⊙O的半径是r,点P到圆心O的距离为d,则有:

 d

 d=r点P在⊙O上;

 d>r点P在⊙O外。

 八、过三点的圆

 1、过三点的圆

 不在同一直线上的三个点确定一个圆。

 2、三角形的外接圆

 经过三角形的三个顶点的圆叫做三角形的外接圆。

 3、三角形的外心

 三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

 4、圆内接四边形性质(四点共圆的判定条件)

 圆内接四边形对角互补。

 九、反证法

 先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。

 十、直线与圆的位置关系

 直线和圆有三种位置关系,具体如下:

 (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;

 (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,

 (3)相离:直线和圆没有公共点时,叫做直线和圆相离。

 如果⊙O的半径为r,圆心O到直线l的距离为d,那么:

 直线l与⊙O相交d

 直线l与⊙O相切d=r;

 直线l与⊙O相离d>r;

 十一、切线的判定和性质

 1、切线的判定定理

 经过半径的外端并且垂直于这条半径的直线是圆的切线。

 2、切线的性质定理

 圆的切线垂直于经过切点的半径。

 十二、切线长定理

 1、切线长

 在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。

 2、切线长定理

 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

 十三、圆和圆的位置关系

 1、圆和圆的位置关系

 如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。

 如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。

 如果两个圆有两个公共点,那么就说这两个圆相交。

 2、圆心距

 两圆圆心的距离叫做两圆的圆心距。

 3、圆和圆位置关系的性质与判定

 设两圆的半径分别为R和r,圆心距为d,那么

 两圆外离d>R+r

 两圆外切d=R+r

 两圆相交R-r

 两圆内切d=R-r(R>r)

 两圆内含dr)

 4、两圆相切、相交的重要性质

 如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。

 十四、三角形的内切圆

 1、三角形的内切圆

 与三角形的各边都相切的圆叫做三角形的内切圆。

 2、三角形的内心

 三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的'内心。

 十五、与正多边形有关的概念

 1、正多边形的中心

 正多边形的外接圆的圆心叫做这个正多边形的中心。

 2、正多边形的半径

 正多边形的外接圆的半径叫做这个正多边形的半径。

 3、正多边形的边心距

 正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

 4、中心角

 正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

 十六、正多边形和圆

 1、正多边形的定义

 各边相等,各角也相等的多边形叫做正多边形。

 2、正多边形和圆的关系

 只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

 十七、正多边形的对称性

 1、正多边形的轴对称性

 正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

 2、正多边形的中心对称性

 边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

 3、正多边形的画法

 先用量角器或尺规等分圆,再做正多边形。

 十八、弧长和扇形面积

 1、弧长公式

 n°的圆心角所对的弧长l的计算公式为

 2、扇形面积公式

 其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。

 3、圆锥的侧面积

 其中l是圆锥的母线长,r是圆锥的地面半径。

 初中数学圆解题技巧

 半径与弦长计算,弦心距来中间站。

 圆上若有一切线,切点圆心半径连。

 切线长度的计算,勾股定理最方便。

 要想证明是切线,半径垂线仔细辨。

 是直径,成半圆,想成直角径连弦。

 弧有中点圆心连,垂径定理要记全。

 圆周角边两条弦,直径和弦端点连。

 弦切角边切线弦,同弧对角等找完。

 要想作个外接圆,各边作出中垂线。

 还要作个内接圆,内角平分线梦圆。

 如果遇到相交圆,不要忘作公共弦。

 内外相切的两圆,经过切点公切线。

 若是添上连心线,切点肯定在上面。

 要作等角添个圆,证明题目少困难。

 辅助线,是虚线,画图注意勿改变。

 假如图形较分散,对称旋转去实验。

关于“圆的基本性质数学知识点”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[绮兰]投稿,不代表盛龙号立场,如若转载,请注明出处:https://snlon.net/sn/28777.html

(94)

文章推荐

  • 奥铃新捷运故障码502314+2

    网上有关“奥铃新捷运故障码502314+2”话题很是火热,小编也是针对奥铃新捷运故障码502314+2寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。是传感器问题。这里所说的传感器包括水温、曲轴位置、空气流量、进气温度、氧传感器等,当这些传感器受损,接触不良或

    2025年09月27日
    179301
  • 辅助神器“手机十三道算牌器”(详细开挂教程)

    亲,手机十三道算牌器这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的通过添加客服微:本司针对手游进行匹配,选择我们的四大理由:1、软件是一款

    2025年09月30日
    136317
  • 垃圾填埋、焚烧处理和堆肥三种处理垃圾方法到底有什么不同?

    网上有关“垃圾填埋、焚烧处理和堆肥三种处理垃圾方法到底有什么不同?”话题很是火热,小编也是针对垃圾填埋、焚烧处理和堆肥三种处理垃圾方法到底有什么不同?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。垃圾填埋:垃圾填埋又分为简单填埋和卫生填埋两种技术。简单填埋一

    2025年10月06日
    159316
  • 时代少年团kfc小卡什么时候结束

    网上有关“时代少年团kfc小卡什么时候结束”话题很是火热,小编也是针对时代少年团kfc小卡什么时候结束寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。2023年1月31日。时代少年团KFC小卡活动于2023年1月20日开始,截止到2023年1月31日结束。时代

    2025年10月24日
    147307
  • 实操教程“小程序微乐麻将到底是不是有挂”附开挂脚本详细步骤

    亲,小程序微乐麻将到底是不是有挂这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的通过添加客服微:本司针对手游进行匹配,选择我们的四大理由:1

    2025年11月15日
    101319
  • 开挂辅助工具“微乐必赢辅助器免费安装”开挂(透视)辅助教程

    亲,微乐必赢辅助器免费安装这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的通过添加客服微:本司针对手游进行匹配,选择我们的四大理由:1、软件

    2025年11月28日
    101317
  • 广州南沙区大涌桥北到广州火车站有多少公里

    网上有关“广州南沙区大涌桥北到广州火车站有多少公里”话题很是火热,小编也是针对广州南沙区大涌桥北到广州火车站有多少公里寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。公交线路:南13路→地铁4号线→地铁5号线,全程约63.6公里1、从大涌桥步行约1.3

    2025年12月01日
    121300
  • 玩家辅助神器:“微乐跑得快开挂教程”其实确实有挂

    >亲,微乐跑得快开挂教程这款游戏原来确实可以开挂,详细开挂教程1、起手看牌2、随意选牌3、控制牌型4、注明,就是全场,公司软件防封号、防检测、 正版软件、非诚勿扰。2022首推。全网独家,诚信可靠,无效果全额退款,本司推出的多功能作 弊辅助软件。软件

    2025年12月10日
    86300
  • 冷车启动时没有高怠速正常吗

    网上有关“冷车启动时没有高怠速正常吗”话题很是火热,小编也是针对冷车启动时没有高怠速正常吗寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。不正常,可能是由以下两个问题引起。一,节气门、空气流量计积炭过多节气门与空气流量计还是比较容易脏的,现在的汽车大部分都是电

    2025年12月17日
    89319
  • 国企编制是什么?

    网上有关“国企编制是什么?”话题很是火热,小编也是针对国企编制是什么?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。国企编制是指国有企业正式职工的用工编制,直接和国有企业签订劳动合同。怎样才算进了国企编制:如何知道自己是不是国企正式工,判断依据是是否与国企签

    2025年12月24日
    82311
  • 老鼠被笼子抓了怎么办

    网上有关“老鼠被笼子抓了怎么办”话题很是火热,小编也是针对老鼠被笼子抓了怎么办寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。问题一:老鼠笼子抓到老鼠后怎么处理用水淹,这个方法最推荐,找一个能淹没老鼠笼的桶,装满水,放老鼠笼进去,放几分钟,老鼠就淹死了。弄

    2026年01月17日
    72300
  • 青少年心理健康标准

    网上有关“青少年心理健康标准”话题很是火热,小编也是针对青少年心理健康标准寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。青少年心理健康标准青少年心理健康标准1 1、具有充分的适应力; 2、能充

    2026年02月08日
    12300

发表回复

本站作者才能评论

评论列表(3条)

  • 绮兰的头像
    绮兰 2025年12月16日

    我是盛龙号的签约作者“绮兰”

  • 绮兰
    绮兰 2025年12月16日

    本文概览:网上有关“圆的基本性质数学知识点”话题很是火热,小编也是针对圆的基本性质数学知识点寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。  1...

  • 绮兰
    用户121610 2025年12月16日

    文章不错《圆的基本性质数学知识点》内容很有帮助